Osmotically Driven Membrane Processes:
Characterization of Water Transport Phenomena through Asymmetric Polymeric Membranes

A dissertation

Presented to the Faculty of the Graduate School

of

Yale University

In Candidacy for the Degree of

Doctor of Philosophy

By

Jeffrey R. McCutcheon

Dissertation Advisor: Menachem Elimelech

May 2008
INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI Microform 3317171
Copyright 2008 by ProQuest LLC.
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway
PO Box 1346
Ann Arbor, MI 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
ABSTRACT

Osmotically Driven Membrane Processes: Characterization of Water Transport Phenomena through Asymmetric Polymeric Membranes

Jeffrey R. McCutcheon

2008

Freshwater availability is one of the most critical issues facing humanity today. With our available freshwater resources continuing to dwindle, mankind must turn to the ocean and brackish groundwater as sources of freshwater. Desalination technologies like reverse osmosis (RO), while capable of producing high quality potable water, are, however, expensive, energy intensive, and environmentally unsustainable due to a high volume of concentrated brine discharge. Forward osmosis (FO) might be a sustainable alternative to reverse osmosis and thermal desalination technologies. The major obstacle to the further development of FO and other osmotically driven membrane processes is the poor water flux performance of the membrane. The primary culprit of this poor water flux performance is concentration polarization, a membrane boundary layer phenomenon which afflicts forward osmosis processes to a much greater extent than their RO counterparts.

In this dissertation, the influence of asymmetric membrane support layer structure and chemistry on water transport in osmotically driven membrane processes is elucidated and discussed. Using a custom designed benchtop forward osmosis system, asymmetric membranes used for pressure driven RO separation were found to perform very poorly
under osmotically driven flow conditions with several draw solutions (or osmotic agents). The poor water flux performance of these membranes was attributed to the prevalence of internal concentration polarization (ICP), a phenomenon contained within the porous support structure of asymmetric membranes. A commercially available forward osmosis membrane was found to perform far better. Higher water fluxes coupled with higher salt rejections and feedwater recoveries were obtained using this membrane tailored for forward osmosis. The superior performance of this membrane was attributed to a thinner, more porous support layer, which resulted in a less severe ICP. Even so, the membrane was itself asymmetric and ICP was found to have a profound effect on water flux considering the very large osmotic pressure driving forces utilized in these experiments.

Subsequent investigations presented in this dissertation examined the severity of ICP using various solutes and characterize the severity of ICP within the membrane structure. The culmination of this aspect of the work resulted in the successful development of a predictive water flux model, which incorporated both internal and external CP effects. This model was tested against experimental data and was used to predict improved flux behavior based on reduced ICP effects due to hypothetical improvements in membrane structural design. Furthermore, a new finding presented as part of this dissertation showed that support layer hydrophobicity may critically hinder water flux for all osmotically driven membranes processes and, therefore, must be considered when explaining poorer than expected flux performance. While not affecting water transport in pressure driven separation processes, the degree of water saturation of these various support layers was found to play a critical role in water transport through the membrane during osmosis. It was concluded that improving membranes by designing asymmetric membrane support layers with thinner, more porous, and more hydrophilic
support structures will be essential to the further development of osmotically driven membrane processes. The implications for improved membrane design based on the findings in this dissertation are discussed.
Acknowledgements

There are too many people to thank for the success of this work, but I will attempt to do so here. This would not have been possible without the help and advice from many colleagues, both within and outside of Yale. Thanks to my advisor Meny, who has taught me not only skills associated with this work, but also skills associated with being a successful, professor and future advisor to graduate students. In addition, thank you to my committee, Paul Van Tassel and William Mitch, for your support and advice. Other Yalies include Dean Salovey, Dean Butler, and former Assistant Dean Burns. Thanks go to my wonderful ENAS friends Jen, Ben, Eric, Jeremiah, Matt, Janel, Jerry, Blair, Marie, and Tyler. The entire Elimelech Lab was essential to my success, including Kai Loon, Wui Seng, Allegra, Anna, Moshe, Seoktae, Baoxia, Maggie, Meagan, Alexis, Dr. Redman, Zak, Anna Costa, and many others. I learned much from my laboratory mentors Sangyoup Lee, Sharon Walker, Long Nghiem, and Jane Hill. Thank you to those colleagues outside of Yale who have encouraged me throughout my graduate career, such as Isabel Escobar, Michelle Chapman, John Pellegrino, David Lamonica, Benny Freeman, Dibakar Battacharyya, Ingo Pinna, Eric Hoek, Steve Ritchie, Jamie Hestekin and Glenn Libscomb. My wonderful friends outside of the lab kept me sane, so thanks to Julia, Catherine, Stephen, Andrew, Jen, Andy, Jeff, Craig, Corey, Jinan, Marek, Charles, David, Bethany, Jess, Gamze, Ariane, and many others. Thank you to my Ohio friends who stayed in touch during my absence: Scott, Mike, Doug, Ann, Elaine, Marlaina, Darlene, Sasha, Katie, Jon, and Dave. Thank you to my high school chemistry teacher, Bonnie Buddendeck, who first got me interested in chemistry and bestowed upon me an intense drive to succeed in science. Thank you to my good friend and future collaborator Rob McGinnis, whose energy, insight, and creativity have spilled over into my work and mind in countless ways. Finally, I’d like to thank my family; Mom, Dad, Skip, and Kim. Without your constant support and encouragement during my time at Yale and throughout my life, I never would have accomplished this.
Table of Contents

Title Page i.
Acknowledgements iii.
Table of Contents iv.
List of Figures x.
List of Tables xv.

Chapter 1: Introduction 1

1.1. Motivation 2
 1.1.1. The problem 2
 1.1.2. The history of forward osmosis 5
 1.1.3. The draw solution 6
 1.1.4. The novel ammonia-carbon dioxide draw solution 7
 1.1.5. Forward osmosis performance 10
 1.1.5.1. Draw solute recovery 10
 1.1.5.2. Membrane performance 11
 1.1.6. Concentration polarization 12
 1.1.7. Potential benefits of ammonia-carbon dioxide forward osmosis 13
 1.1.8. Other osmotically driven membrane processes 14
 1.1.9. The Path toward sustainable water and power 15

1.2. Objectives and Scope of Dissertation 16

1.3. Dissertation Organization 17
1.4. Contributions 18
1.5. References 20

Chapter 2: A Novel Ammonia-Carbon Dioxide Forward (Direct) Osmosis Desalination Processes 23

2.1. Introduction 24
2.2. Previous Forward Osmosis efforts

2.3. The Ideal Draw Solution for Forward Osmosis

2.4. The novel Forward Osmosis Desalination Process
 2.4.1. The draw solution: Ammonia-carbon dioxide
 2.4.2. Process configuration

2.5. Testing the FO Process: Experimental Methods
 2.5.1. Forward osmosis setup
 2.5.2. Membranes tested
 2.5.3. Determination of water flux
 2.5.4. Determination of salt rejection

2.6. Testing the Novel FO Process: Water Flux and Salt Rejection
 2.6.1. Influence of membrane type on water flux
 2.6.2. Why the significant difference in water flux?
 2.6.2.1. Membrane hydraulic permeability
 2.6.2.2. Membrane structure
 2.6.3. Influence of draw solution concentration on membrane performance
 2.6.3.1. Water flux
 2.6.3.2. Salt rejection

2.7. Concluding Remarks

2.8. Acknowledgements

2.9. References

Chapter 3: Desalination by Ammonia-Carbon Dioxide Forward Osmosis:
Influence of Draw and Feed Solution Concentrations on Process Performance

3.1. Introduction

3.2. Materials and Methods
 3.2.1. Ammonia-carbon dioxide draw solution and sodium chloride feed solution
3.2.2. Forward osmosis membrane
3.2.3. Forward osmosis crossflow set up
3.2.4. Water flux and salt rejection measurements
3.2.5. Dependence of membrane water permeability on feed NaCl concentration

3.3. Results and Discussion
3.3.1. Water flux with variable feed and draw solution concentrations
3.3.2 Processes governing the permeate flux behavior
 3.3.2.1. External concentration polarization
 3.3.2.2. Internal concentration polarization
 3.3.2.3. Does the membrane water permeability coefficient change with feed NaCl concentration?
3.3.3. Water flux uniquely depends on a normalized osmotic pressure driving force
3.3.4. Salt rejection and recovery
3.4. Concluding remarks
3.5 Acknowledgements
3.6. References

Chapter 4: Internal Concentration Polarization in Forward Osmosis: Role of Membrane Orientation

4.1 Introduction
4.2 Materials and Methods
 4.2.1. FO Membrane
 4.2.2. Feed and Draw Solutions
 4.2.3. FO Test Unit and Procedures
4.3. Results and Discussion
 4.3.1. Effect of Solute Type against the Active Layer
 4.3.2. Effect of Solute Type against the Support Layer
Chapter 5: Influence of Concentrate and Dilute Internal Concentration Polarization on Flux Behavior in Forward Osmosis

5.1. Introduction 92
5.2. Materials and Methods 94
 5.2.1. Feed and draw solutions 94
 5.2.2. Forward osmosis membrane 95
 5.2.3. Forward osmosis crossflow system 95
 5.2.4. Forward osmosis runs 96
5.3. Modeling Flux and Concentration Polarization 98
 5.3.1. Concentrate and dilute external concentration polarization 98
 5.3.1.1. Concentrate internal concentration polarization 102
 5.3.1.2. Dilute internal concentration polarization 104
5.4. Results and Discussion 106
 5.4.1. Flux behavior at different temperatures 106
 5.4.1.1. Draw solution against the active layer 107
 5.4.1.2. Draw solution against the support layer 111
 5.4.2. Predicted flux behavior 114
 5.4.2.1. Draw solution against the active layer 117
 5.4.2.2. Draw solution against the backing layer 119
5.5. Improving water flux in forward osmosis 121
5.5. Concluding Remarks 124
5.6. Acknowledgements 125
5.7. References 125
Chapter 6: Modeling Water Flux in Forward Osmosis: Implications for Improved Membrane Design

6.1 Introduction
6.2 Governing Equations for Permeate Flux
 6.2.1 External concentration polarization
 6.2.2 Internal concentration polarization
 6.2.3. Model parameters
6.3 Results and Discussion
 6.3.1 Dense symmetric membrane
 6.3.2. Asymmetric membrane in PRO mode
 6.3.2.1. Flux simulation in the PRO mode
 6.3.2.2. Performance assessment of the PRO mode.
 6.3.3. Asymmetric membrane in FO mode
 6.3.3.1. Simulating flux in the FO Mode: Deionized water feed
 6.3.3.2. Performance Assessment of the FO mode: Deionized water feed
 6.3.3.3. Simulating flux in the FO Mode: Non-dilute feed
 6.3.3.4. Performance assessment of FO mode: Non-dilute feed
6.4. Implications for Improved Membrane Design
6.5. Concluding Remarks
6.6 Acknowledgements
6.7 References

Chapter 7: Influence of Membrane Support Layer Hydrophobicity on Water Flux in Osmotically Driven Membrane Processes

7.1. Introduction
7.2. Materials and Methods
 7.2.1. Forward osmosis crossflow setup
 7.2.2. Membrane selection
7.2.2.1. Removal of fabric backing layers 163
7.2.3. Contact angle measurement 164
7.2.4. Experimental protocols for flux measurement 164
 7.2.4.1. Temperature and stability equilibration 164
 7.2.4.2. Reverse osmosis pretreatment 165
 7.2.4.3. Feed solution degassing 166
 7.2.4.4. Surfactant additions to feed solution 167
7.3. Results and discussion 167
 7.3.1. Contact angle analysis 167
 7.3.2. Water flux in FO mode 171
 7.3.2.1. SWC-30 XLE membrane 171
 7.3.2.2. CE membrane 174
 7.3.3. Water flux in the PRO mode 177
 7.3.3.1. SWC-30 XLE membrane 178
 7.3.3.2. CE membrane 182
 7.3.3.3. SDS addition to the feed solution 186
7.4. Concluding remarks 188
7.5 Acknowledgements 189
7.6. References 189

Chapter 8: Concluding Remarks 192
List of Figures

Fig. 1.1 – Cost structure for sea water desalination by reverse osmosis

Fig. 1.2 – Forward osmosis desalination process diagram

Fig. 1.3 – Osmotic pressure comparison of draw solution, seawater, and reverse osmosis operating pressure

Fig. 1.4 – Comparison between recovery of RO and FO

Fig. 1.5 – Schematic of open loop PRO using osmotic pressure differences between seawater and freshwater to generate electricity

Fig. 2.1 – Osmotic pressure of the ammonia-carbon dioxide solution at 50° C

Fig. 2.2 – Schematic diagram of the novel ammonia-carbon dioxide forward osmosis desalination process

Fig. 2.3 – Schematic diagram of the laboratory-scale forward osmosis setup

Fig. 2.4 – Sample of permeate water volume raw data

Fig. 2.5 – Comparison of water flux in forward osmosis mode for the three membranes tested: AG and CE (RO membranes), and CTA (FO membrane)

Fig. 2.6 – Pure water flux versus hydraulic pressure for the three membranes tested: AG, CE, and CTA

Fig. 2.7 – SEM images of cross section of the forward osmosis (CTA) membrane

Fig. 2.8 – FO (CTA) membrane water flux over a range of osmotic pressure differences

Fig. 2.9 – FO (CTA) membrane NaCl rejection

Fig. 3.1 – SEM image of a cross section of the forward osmosis (CA) membrane

Fig. 3.2 – Schematic diagram of the laboratory-scale forward osmosis system

Fig. 3.3 – Flux data for a variety of feed solution (NaCl) concentrations
Fig. 3.4 – Effect of draw solution concentration on the performance ratio for various feed solution concentrations

Fig. 3.5 – Illustration of driving force profiles, expressed as water chemical potential μ_W, for osmosis through several membrane types and orientations.

Fig. 3.6 – SEM images of (a) the FO membrane (CA) active layer (at 100,000x) and (b) the membrane backing layer (100,000x). The image of the membrane backing layer reveals a porous structure.

Fig. 3.7 – Flux data with NaCl draw solution on the active layer and deionized water on the backing layer.

Fig. 3.8 – Dependence of water flux on the effective driving force after correction for external dilutive concentration polarization along the active layer.

Fig. 3.9 – Flux data (for the FO experiments summarized in Table 3.1) plotted against the logarithm of the ratio of feed and draw solution osmotic pressures.

Fig. 3.10 – Flux data (for the FO experiments summarized in Table 3.1) plotted against the normalized osmotic pressure difference.

Fig. 3.11 – Rejection data for the FO runs presented in Table 3.1.

Fig. 4.1 – Water flux as a function of driving force (pressure difference) using three different draw solutions in the PRO mode.

Fig. 4.2 – Schematic representation of (a) dilutive internal concentration polarization (ICP) and (b) concentrative internal concentration polarization (ICP).

Fig. 4.3 – Flux data for a variety of draw solution concentrations. Draw solution is placed against the support layer of the membrane and feed (deionized water) in placed against the active layer.

Fig. 4.4 – Fig. 4.4 - Water flux data for 0.5 M NaCl draw solution and a variety of NaCl feed solutions ranging from 0.0625 to 0.375 M.

Fig. 5.1 – Schematic diagram depicting the FO testing procedure.
Fig. 5.2 – Illustration of osmotic driving force profiles for osmosis through several membrane types and orientations, incorporating both internal and external concentration polarization. (a) A symmetric dense membrane; the profile illustrates concentative and dilutive ECP. (b) An asymmetric membrane with the dense active layer against the draw solution (PRO mode); the profile illustrates concentative ICP and dilutive ECP. (c) An asymmetric membrane with the porous support layer against the draw solution (FO mode)

Fig. 5.3 – Flux data plotted against the osmotic pressure difference between the bulk feed and draw solutions at 20, 30, and 40°C. The draw solution is against the active layer and the feed solution is against the support layer

Fig. 5.4 – Flux and driving force data (from Fig. 5.3) after correction for external concentration polarization (ECP) along the active layer (permeate side). The draw solution is against the active layer and the feed solution is against the support layer

Fig. 5.5 – Flux data plotted against the osmotic pressure difference between the bulk feed and draw solutions at 20, 30, and 40°C. The draw solution is against the support layer and the feed solution is against the active layer

Fig. 5.6 – Flux and driving force data from Fig. 5.5 after correction for external concentration polarization (ECP) along the active layer (feed side). The draw solution is against the support layer and the feed solution is against the active layer

Fig. 5.7 – Flux data plotted against the osmotic pressure differences between the bulk feed and draw solutions at 30°C. Experimental data is compared to the model prediction. Membrane is oriented in the PRO mode

Fig. 5.8 – Flux data plotted against the osmotic pressure differences between the bulk feed and draw solutions at 40°C. Experimental data is compared to the model prediction. Membrane is oriented in the PRO mode

Fig. 5.9 – Flux data plotted against the osmotic pressure differences between the bulk feed and draw solutions at 30°C. Experimental data is compared to the model prediction. Membrane is oriented in the FO mode
Fig. 5.10 – Flux data plotted against the osmotic pressure differences between the bulk feed and draw solutions at 40°C. Experimental data is compared to the model prediction. Membrane is oriented in the FO mode

Fig. 5.11 – Predicted water flux for membranes in the FO mode using developed model

Fig. 6.1 – Effect of concentrative ECP on flux performance based on net driving force in reverse osmosis mode for various NaCl feed solutions

Fig. 6.2 – Effect of dilutive ECP and coupled concentrative and dilutive ECP in forward osmosis

Fig. 6.3 – Flux modeled in the PRO mode (concentrative ICP coupled with dilutive ECP) for membranes with varying solute resistivity, K

Fig. 6.4 – Flux modeled in the FO mode (dilutive ICP in the absence of concentrative ECP) for membranes with variable solute resistivity

Fig. 6.5 – Flux modeled in the FO mode (dilutive ICP coupled with concentrative ECP) for membranes with variable solute resistivity

Fig. 7.1 – Cross sectional SEM images for the (a) Osmonics CE, (b) Filmtec SWC-30 XLE, and (c) Hydration Technologies CA membranes.

Fig. 7.2 – Cross sectional SEM images for the (a) Osmonics CE membrane and (b) Filmtec SWC-30 XLE membrane with the fabric layer removed.

Fig. 7.3 – A top view of the PET fabric layer (right) and porous cellulosic support layer (left) of the CE membrane

Fig. 7.4 – Steady state forward osmosis flux measurements for the SWC-30 XLE membrane averaged over at least 1 hour

Fig. 7.5 – Steady state forward osmosis flux measurements for the CE membrane averaged over at least 1 hour

Fig. 7.6 – Forward osmosis flux measurements for the CE membrane with the fabric layer removed compared to flux measurements for the CA membrane (taken from previous work) over a range of NaCl draw solution concentrations. The membranes are oriented in the PRO mode, with the feed (DI water) against the active layer and the draw solution (1.5 M NaCl) against the support layer
Fig. 7.7 – Diagram depicting the osmotic pressure profile across a membrane oriented in the PRO mode (draw solution on the active layer). The feed (the right side) is deionized water

Fig. 7.8 – Water flux data for the SWC-30 XLE membrane under 3 different conditions

Fig. 7.9 – Water flux data for the SWC-30 XLE with the fabric layer removed with and without RO pretreatment. The membrane is oriented in the PRO mode

Fig. 7.10 – Water flux data for the CE membrane under different conditions. The membrane is oriented in the PRO mode

Fig. 7.11 – Forward osmosis flux measurements for the CE membrane with the fabric layer removed compared to flux measurements for the CA membrane (taken from previous investigations) over a range of NaCl draw solution concentrations. The membranes are oriented in the FO mode, with the feed (DI water) against the active layer and the draw solution (1.5 M NaCl) against the support layer

Fig. 7.12 – Forward osmosis flux measurements for the CE and SWC-30 XLE membrane. Also included is data for the SWC-30 XLE membrane with no fabric. The membranes are oriented in the PRO mode. SDS stock solution was added to the deionized feedwater (final SDS concentration after addition was 1 mM) at time equal to 50 minutes
List of Tables

Table 3.1 - Water flux, performance ratio, and NaCl rejection results for the FO runs carried out in this study under the stated feed and draw solution concentrations

Table 4.1 - Summary of experimental flux data, corresponding bulk osmotic pressures (π), and calculated K values for the experiments with NaCl depicted in Figs. 4.1, 4.3, and 4.4

Table 4.2 - Calculated K values for the three solutes based on the experimental data presented in Figs. 4.3 and 4.4 and Table 4.1.

Table 5.1 - Data for 20°C osmosis runs in the FO and PRO mode.

Table 6.1 - Parameters for forward osmosis flux modeling

Table 6.2 - Performance data from Fig. 6.1 for a set flux of 10 gfd (4.71 μm/s)

Table 6.3 - Performance data from Fig. 6.3 (PRO mode) for a flux set at 10 gfd (4.71 μm/s). Draw solution is fixed at 1.5 M NaCl (or 70 atm).

Table 6.4 - Performance data from Fig. 6.4 (FO mode) for a flux of 10 gfd (4.71 μm/s)

Table 6.5 - Performance data from Fig. 6.5 (FO mode) for a flux of 10 gfd (4.71 μm/s)

Table 7.1 - Measured contact angles of the various layers of the membranes used.
Chapter 1:

Introduction
1.1. Motivation

1.1.1. The problem

There is a finite amount of freshwater readily available for human consumption and use. This supply is currently strained due to competing utilization demands for farming, industrial, commercial, and domestic uses. Increasing populations, especially in water starved regions of the world, place excessive strain on already dwindling or otherwise impaired water sources. With the world population expected to break ten billion by 2040, the expected draw on these resources will be even less sustainable with many of these 4 billion new humans being required to find their water from alternative sources [1].

One of these alternatives is the vast quantities of saline water in the oceans and large brackish groundwater reserves often found in arid regions. These sources represent over 97% of the world’s water, and hence if tapped economically would yield a virtually unlimited supply of water. The costs associated with desalinating these types of water, though, is high. Until a few years ago, the most utilized technologies for desalination were thermal technologies, primarily multi-stage flash (MSF) distillation and multi-effect distillation (MED). MSF and MED are popular in parts of the world where thermal energy is readily available and inexpensive. The drawbacks of these technologies are the large thermal energy inputs required to vaporize water, process brine discharges, relatively low water recoveries, and significant electrical requirements [2].

Due to the expense and enormous energy costs associate with MSF and MED, reverse osmosis has become far more popular. Reverse osmosis (RO), which provides just over half of the world’s current desalination capacity, is an electrically driven process which uses a semi-permeable membrane to separate salt from water. This process is
capable of somewhat higher recoveries than its thermal counterparts while no thermal energy. Electricity use is still high, however, and its cost comprises the largest portion of the RO cost structure (for seawater desalination) as shown in Fig. 1.1 [3]. Energy costs are less for lower salinity feedwaters, such as brackish groundwater. In addition to the high energy costs, brine discharge is a critical drawback of all desalination processes and requires the locating of a plant near an ocean where the discharge of brine has less, albeit still a non-negligible, environmental impact. These technologies, therefore, cannot be used to desalinate inland brackish groundwater sources since the brine cannot be disposed of in a sustainable manner. With high energy use and extensive brine disposal problems, the overall sustainability of these technologies is called into question. Recent reports by Sandia National Laboratories and the U.S. Bureau of Reclamation have in fact claimed that [4] “We cannot realistically increase the volume of water available in the future while relying solely on the evolution of current-generation desalination technologies”.
With the issues of energy use and water recovery at the forefront of the desalination debate, this dissertation will describe an alternative to these current generation technologies. Forward osmosis (FO) is a membrane based separation process, like RO, which relies on the semipermeable character of a membrane to remove salt. However, unlike RO, the driving force for separation is osmotic pressure, not hydraulic pressure. By using a concentrated solution of high osmotic pressure, called the draw solution, water can be induced to flow from saline water across the membrane, rejecting the salt, and into the concentrated draw solution [5]. The now diluted draw solution must be reconcentrated, liberating potable water and recycling the draw solute. Fig. 1.2 shows the general process diagram.
1.1.2. The history of forward osmosis

The idea of using osmotic pressure to drive separation is not new. In fact, the concept of using FO for desalination was considered back in the 1970’s [7-9]. These early FO designs used concentrated sugar solutions and various membrane configurations, resulting in diluted sugar solutions intended for drinking. After these early investigations, FO use for separation processes disappeared in the peer reviews journals until recently when FO was reintroduced as a means for concentrating food products (direct osmotic concentration, DOC) [10,11] and as a means for desalination [12,13] and wastewater treatment [14]. During this 30 year gap a new osmosis based technology emerged called pressure retarded osmosis (PRO) [15-18]. PRO is an osmotic energy conversion processes utilizing naturally occurring osmotic pressure gradients such as those that exist where any freshwater river or stream meet a saline water body. This work began in the 1970’s and continues today. Combined, the work of forward osmosis, direct osmotic concentration, and pressure retarded osmosis form the new field of osmotically driven...